首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20471篇
  免费   1814篇
  国内免费   1283篇
电工技术   748篇
综合类   1822篇
化学工业   1061篇
金属工艺   1601篇
机械仪表   4429篇
建筑科学   286篇
矿业工程   326篇
能源动力   222篇
轻工业   323篇
水利工程   55篇
石油天然气   197篇
武器工业   234篇
无线电   1306篇
一般工业技术   1334篇
冶金工业   306篇
原子能技术   75篇
自动化技术   9243篇
  2024年   126篇
  2023年   492篇
  2022年   659篇
  2021年   725篇
  2020年   699篇
  2019年   559篇
  2018年   604篇
  2017年   641篇
  2016年   698篇
  2015年   784篇
  2014年   1104篇
  2013年   1127篇
  2012年   1141篇
  2011年   1341篇
  2010年   920篇
  2009年   1099篇
  2008年   1031篇
  2007年   1345篇
  2006年   1236篇
  2005年   1122篇
  2004年   996篇
  2003年   818篇
  2002年   618篇
  2001年   573篇
  2000年   425篇
  1999年   340篇
  1998年   332篇
  1997年   321篇
  1996年   254篇
  1995年   232篇
  1994年   226篇
  1993年   155篇
  1992年   152篇
  1991年   137篇
  1990年   121篇
  1989年   102篇
  1988年   100篇
  1987年   26篇
  1986年   29篇
  1985年   28篇
  1984年   30篇
  1983年   22篇
  1982年   18篇
  1981年   6篇
  1980年   11篇
  1979年   8篇
  1978年   6篇
  1976年   6篇
  1974年   4篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
As suggested by the uncanny valley hypothesis, robots that resemble humans likely elicit feelings of eeriness. Based on the psychological model of meaning maintenance, we expected that the uncanny valley experience could be mitigated through a fictional story, due to the meaning-generating function of narratives. A field experiment was conducted, in which 75 participants interacted with the humanlike robot Telenoid. Prior to the interaction, they either read a short story, a non-narrative leaflet about the robot, or they received no preliminary information. Eeriness ratings were significantly lower in the science fiction condition than in both other conditions. This effect was mediated by higher perceived human-likeness of the robot. Our findings suggest that science fiction may provide meaning for otherwise unsettling future technologies.  相似文献   
2.
Chaos optimization algorithm (COA) utilizes the chaotic maps to generate the pseudo-random sequences mapped as the decision variables for global optimization applications. A kind of parallel chaos optimization algorithm (PCOA) has been proposed in our former studies to improve COA. The salient feature of PCOA lies in its pseudo-parallel mechanism. However, all individuals in the PCOA search independently without utilizing the fitness and diversity information of the population. In view of the limitation of PCOA, a novel PCOA with migration and merging operation (denoted as MMO-PCOA) is proposed in this paper. Specifically, parallel individuals are randomly selected to be conducted migration and merging operation with the so far parallel solutions. Both migration and merging operation exchange information within population and produce new candidate individuals, which are different from those generated by stochastic chaotic sequences. Consequently, a good balance between exploration and exploitation can be achieved in the MMO-PCOA. The impacts of different one-dimensional maps and parallel numbers on the MMO-PCOA are also discussed. Benchmark functions and parameter identification problems are used to test the performance of the MMO-PCOA. Simulation results, compared with other optimization algorithms, show the superiority of the proposed MMO-PCOA algorithm.  相似文献   
3.
Electrochemical impedance spectroscopy (EIS), anodic polarization and scanning electron microscopy techniques were used to investigate the damage mechanism in the transpassive potential region of AISI ...  相似文献   
4.
This study develops a 6-DOF mathematical model for a robotic fish that considers surge, sway, heave, roll, pitch, and yaw. The model considers the conditions of a fish swimming in ocean current perturbations similar to the ocean current perturbations of the slender-body autonomous underwater vehicles. For swimming and turning behaviors, a nonlinear, dynamic, carangiform locomotion model is derived by using a planar four-link model. A 2-DOF barycenter mechanism is proposed to provide body stabilization and to serve as an actuating device for active control design. A barycenter control scheme is developed to change the center of gravity of the robot fish body by moving balancing masses along two axes. The projected torque on x and y axes propel pitch and roll angles to the desired settings. A Stabilizing controller, fish-tail mechanism, rigid body dynamics, and kinematics are incorporated to enable the fish robot to move in three dimensional space. Simulation results have demonstrated maneuverability and control system performance of the developed controller which is proposed to conduct path tracking of the robot fish as it swims under current perturbations.  相似文献   
5.
The World Robot Summit is a robot Olympics and aims to be held in a different country every four years from 2020. The concept of the Plant Disaster Prevention challenge is daily inspections, checks, and emergency response in industrial plants, and in this competition, robots must carry out these types of missions in a mock-up plant. The concept of the Tunnel Disaster Response and Recovery challenge is emergency response to tunnel disasters, and is a simulation competition whereby teams compete to show their ability to deal with disasters, by collecting information and removing debris. The Standard Disaster Robotics challenge assesses, in the form of a contest, the standard performance levels of a robot that are necessary for disaster prevention and emergency response. The World Robot Summit Preliminary Competition was held at Tokyo Big Sight in October 2018, and 36 teams participated in the Disaster Robotics Category. UGVs and UAVs contended the merits of new technology for solving complex problems, using core technologies such as mobility, sensing, recognition, performing operations, human interface, autonomous intelligence etc., as well as system integration and implementation of strategies for completing missions, gaining high-level results.  相似文献   
6.
Crashworthiness simulation system is one of the key computer-aided engineering (CAE) tools for the automobile industry and implies two potential conflicting requirements: accuracy and efficiency. A parallel crashworthiness simulation system based on graphics processing unit (GPU) architecture and the explicit finite element (FE) method is developed in this work. Implementation details with compute unified device architecture (CUDA) are considered. The entire parallel simulation system involves a parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty contact force calculation algorithm. Three basic GPU-based parallel strategies are suggested to meet the natural parallelism of the explicit FE algorithm. Two free GPU-based numerical calculation libraries, cuBLAS and Thrust, are introduced to decrease the difficulty of programming. Furthermore, a mixed array and a thread map to element strategy are proposed to improve the performance of the test pairs searching. The outer loop of the nested loop through the mixed array is unrolled to realize parallel searching. An efficient storage strategy based on data sorting is presented to realize data transfer between different hierarchies with coalesced access during the contact pairs searching. A thread map to element pattern is implemented to calculate the penetrations and the penetration forces; a double float atomic operation is used to scatter contact forces. The simulation results of the three different models based on the Intel Core i7-930 and the NVIDIA GeForce GTX 580 demonstrate the precision and efficiency of this developed parallel crashworthiness simulation system.  相似文献   
7.
In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the ‘understanding the brain by creating the brain’ approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognitive science with special emphasis on humanoid robots. Third, in brain–machine interface research, a brain and a robot are mutually connected within a closed loop. In this paper, we review the theoretical backgrounds of these three interdisciplinary fields and their recent progress. Then, we introduce recent efforts to reintegrate these research fields into a coherent perspective and propose a new direction that integrates brain science and robotics where the decoding of information from the brain, robot control based on the decoded information and multimodal feedback to the brain from the robot are carried out in real time and in a closed loop.  相似文献   
8.
The effects of physical embodiment and physical presence were explored through a survey of 33 experimental works comparing how people interacted with physical robots and virtual agents. A qualitative assessment of the direction of quantitative effects demonstrated that robots were more persuasive and perceived more positively when physically present in a user׳s environment than when digitally-displayed on a screen either as a video feed of the same robot or as a virtual character analog; robots also led to better user performance when they were collocated as opposed to shown via video on a screen. However, participants did not respond differently to physical robots and virtual agents when both were displayed digitally on a screen – suggesting that physical presence, rather than physical embodiment, characterizes people׳s responses to social robots. Implications for understanding psychological response to physical and virtual agents and for methodological design are discussed.  相似文献   
9.
移动机器人路径规划方法研究   总被引:3,自引:0,他引:3  
董宇欣 《信息技术》2006,30(6):108-111
移动机器人技术研究中的一个重要领域是路径规划技术,它分为基于模型的环境已知的全局路径规划和基于传感器的环境未知的局部路径规划。综述了移动机器人路径规划技术的发展现状指出了各种方法的优点与不足,最后对移动机器人路径规划技术的发展趋势进行了展望。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号